

Retrofitting an Aeration Basin with Anoxic Zone to Reduce Operations Cost and Improve Performance

Ed Griffenberg, Operations Specialist HDR Engineering, Edmonds, WA

<u>Case Study – Mount Vernon WWTP</u>

- Project Background
- Retrofit Ideas
- Model
- Implementation
- Reality Check
- Design & Construction
- Conclusion

Background

- The City of Mount Vernon is located approximately half way between Everett and Bellingham in Washington State.
- Largest community in Skagit County.
- Draper Valley Farm is the largest industrial customer (15-20% of loading).

Mount Vernon Wastewater Treatment Plant - Before Upgrade

Wastewater Treatment Plant

- Provides secondary treatment utilizing the activated sludge process. This process is more flexible than others (trickling filters for example) in adapting to changes, such as nutrient removal.
- Originally designed for TSS and BOD removal only
- Began partial nitrifying in 2001

Why Nitrify?

- Required by new permit
- Difficult to avoid in summer
- Develop data for plant upgrade design
- Operator interest

Nitrogen Transformations

Wastewater Treatment Plant Capacity

- Average day design flow of 5.6 MGD
- Peak design flow of 12.0 MGD

Future Expansions Increase Plant Capacity from 10.8 MGD to 16.4 MGD

Aeration Basin Influent

Parameter	Unit Summer	
Flow	MGD	2.63
COD	mg/L	265
BOD	mg/L	122
TSS	mg/L	75
TKN	mg/L	45
NH ₃	mg/L 30-45	
Temperature	٥С	20

NPDES Permit Effluent Average Monthly Limits

- Must try to remove Ammonia from July 1st through October 31st.
- 30 mg/L of BOD_5
- 30 mg/L of TSS
- 200 Fecal Coliform

Activated Sludge Process

Original Design

Previous Summer Nitrification Problems

- Floating sludge in clarifiers
- Trying to nitrify to just meet permit limits resulted in nitrite lock
- Nitrite lock disinfection problems
- Insufficient alkalinity results in low effluent pH

Denitrification in Wrong Place

Attempt to Minimize Floating Sludge

• Increase RAS to the maximum to minimize clarifier sludge detention time was not effective

Why Did Sludge Float

- Nitrification converts ammonia to nitrate
- Without oxygen in the secondary clarifiers, nitrates will denitrify producing nitrogen gas
- Gas bubbles float the sludge blanket

Nitrogen Transformations

Solving the Problem

- What can be done to prevent floating sludge?
 - Prevent denitrification in secondary clarifier
 - Denitrify somewhere else before nitrate enters clarifier

Solving the Problem

- How to remove the nitrate?
 - Create an anoxic zone in the activated sludge basins, pump nitrate rich MLSS to the anoxic zone, provide a carbon source and the biomass will do the rest.

Modified Ludzack Ettinger (MLE) System

Original Design

Anoxic Basin Retrofit

Will the Idea Work?

• Before modifications are made, run computer model to determine feasibility – BioWin Model

Base Conditions

- 100% Mixed Liquor Recycle (MLR) rate and 50% RAS rate
- Initial reactor D.O. at 2 mg/L (to simulate aeration by screw pumps)
- Sufficient aeration capacity to meet oxygen demand in aerobic reactors

Base Run Output

- Complete nitrification (98% ammonia removal)
- 50% nitrate removal was slightly lower than textbook denitrification performance
- High effluent nitrate (17 mg/l) due to high influent ammonia (36 mg/l)

Denitrification vs. Recycle

Additional Model Observations

- 200% MLR rate resulted in same effluent nitrate concentration
- Modeling a higher influent BOD resulted in much lower effluent nitrate
- Results indicate actual BOD/TKN ratio is too low to achieve theoretical denitrification removal at higher MLR rates

Modeling Conclusions

- MLE mode will:
 - Recover alkalinity consumed in nitrification
 - Reduce oxygen demand
 - Result in effluent nitrate 50% lower than operating without denitrification
- Lower effluent nitrate will result in less potential for floating sludge in clarifier
- High influent ammonia relative to influent BOD results in lower denitrification rate
- Thus proceed with implementation!

Economic Retrofit

- Use spare vertical turbine pump
- Use existing basins
- Purchase Flygt submersible mixer
- Equipment/piping installed by plant staff
- Modifications completed in June 2003

MLR Pump

Anoxic Basin Mixer

Reality Check

- Additional sampling and analysis conducted
- Actual influent parameters used in additional model runs
- Compare real life performance to model prediction

Nitrification Performance

Comparison of Nitrification

- Real life data indicates unstable nitrification at influent ammonia level higher than approximately 34 mg/L
- Computer model predicts complete nitrification for the same range of influent ammonia concentrations

- Plant staff reported occasional difficulty maintaining sufficient D.O. (2 mg/L) in first aeration basin. Model assumes sufficient aeration at all times
- Implication further work required to assess aeration capacity and fine tune controls

Comparison of Denitrification

- Real life data indicates 80% nitrate removal for BOD/TKN ratio from 2.5 to 3.8.
- Actual nitrate removal meets theoretical maximum value even though BOD/TKN ratio is too low (< 4.0).
- Hypothesis model kinetic parameters based on domestic wastewater. Industrial contribution (23% of plant flow) may change dynamics.

Trial Outcome

- Plant meets effluent permit limits and nitrogen loading was reduced to improve water quality
- Clarifier floating sludge problem solved
- Good data for plant upgrade generated (additional data needed to fully calibrate model)
- Plant staff enjoyed modifying process

Other Insights

- Side stream treatment of the dewatering filtrate may be required to reduce ammonia loading on the aeration basins.
- Basic nitrogen removal, to 8 to 10 mg/L, doesn't necessarily need to involve massive investment in capital facilities.

Design & Construction Services

Future Expansions Increase Plant Capacity from 10.8 MGD to 16.4 MGD

NDN Flow Pattern

New Process for Old Basins

Design Criteria

Constituent				
Flow (BOD mode)	mgd	9.0	15.0	22.0
Flow (nitrification mode)	mgd	4.6	7.6	22.0
BOD (BOD mode)	lb/day	13,600	17,300	N/A
	mg/l	181	138	N/A
BOD (nitrification mode)	lb/day	7,000	8,500	N/A
	mg/l	182	134	N/A
Ammonia (nitrification mode)	lb/day	800	1,000	N/A
	mg/l	20.8	15.8	N/A

Month 2012	Average Flow MGD	Average TSS (mg/ l)	Average BOD (mg/l)	Average NH ₃ -N / NO ₃ (mg/l)			
BOD Mode							
Feb	5.1	7	5	20.0			
March	5.3	6	5	23.9			
April	4.5	15	9	30.3			
Мау	4.4	4	9	20.0			
Nitrification Mode							
July	3.8	7	16	4.6/6.7			
August	2.8	6	13	0.8/0.8			
September	2.6	7	12	1.8/2.5			
October	2.5	9	12	2.2/9.6			

Process Control Activities

- NH₃/NO₃ monitoring in each basin
- Adjustments to D.O., wasting rate, or caustic rate.
- Tight pH control with pH probe.
- Dewatering controls
- RAS and MLR rate controls
- Seasonal BNR/BOD mode

- Other Observations
 - Side stream treatment not used in AB-1A
 - Additional mixer placed in AB-1A to increase size of anoxic zone
 - Resulted in a decrease of nitrate and thus of denitrification in the secondary clarifier
 - SVI dropped from 300 to 180 in 30 day and then to 80 after an additional 30 days
 - Filament growth was reduced to almost nothing

• By using our skills, the HDR/Mount Vernon team was successful in helping Mount Vernon develop and implement low-cost process modifications that improved plant operation, and achieved a secondary benefit of improved water quality.

Acknowledgements

- Gary Duranceau WWTP Superintendent
- Andrew Denham— Process Control/Lab
- Ray Pickens Electrical Modification
- Ron Eastman Mechanical Modification
- Dr. JB Neethling BioWin Modeler
- Bob Bower Operations Specialist

Retrofitting an Aeration Basin with Anoxic Zone to Reduce Operations Cost and Improve Performance

Ed Griffenberg, Operations Specialist HDR Engineering, Edmonds, WA

