Boise, ID

Gasification of Sludge and Biosolids – A Review of Technology Fundamentals and the Current Commercial Status

October 24 | 2012

Agenda

- Background
- Process Fundamentals
- Types of Gasifiers
- Commercial Status
- Energy Balances
- Gasification Relative to Today's Issues
- Summary

Background – History of Gasification

- Charcoal formation (pyrolysis)
 - Several thousand years old
- Gasification
 - Large scale use on coal in the 1800's; wood in 1900's
 - New focus \rightarrow alternative feedstocks

EPA, U.S. (2012). Technology Assessment Report: Aqueous Sludge Gasification Technologies.

Process Fundamentals

General Steps

- 1. Drying
- 2. Pyrolysis (volatilization)
- 3. Combustion (oxidation)
- 4. Gasification (reduction)

Main Types of Gasifiers

- Fixed bed
- Fluidized bed

Reaction Pathways

Heating Methods

Feedstock Combustion:

Char + Limited
$$O_2 \rightarrow CO_2 + CO + H_2O + Heat$$

External Heat Sources:

Induction Heater (Pyromex)

Plasma Torch (Westinghouse)

Technologies – Fixed Bed Gasifiers

http://www.uaex.edu/Other_Areas/publications/publications_list.asp

Technologies – Fluidized Bed Gasifiers

http://www.uaex.edu/Other_Areas/publications/publications_list.asp

http://www.cospp.com/articles/print/volume-10/issue-1/features/danishbiomass-gasification.html

Feedstock Properties

- Prefer undigested sludge
- Higher volatile content and less ash preferred

Proximate Analysis of Various Biosolids Feedstocks

Parameter	"Typical" Undigested Sludge ¹	"Typical" Digested Sludge ¹	"Fresh Solids" ²	
Ash, %	25-30	40-50	5.5-8.5	
Volatile, %	65-70	40-50	86.3	
Fixed C, %	5-10	5-10	7.9	
HHV, Btu/Ib	6,500-8,500	3,000-5,500	7,500-8,000	

Sources: 1. Stamford Waste to Energy Draft Report; 2. Gikas et al., 2011

Syngas Properties

- Low energy content
 - 100-130 Btu/ft³ typical (air-blown)
 - Biogas ~550 Btu/ft³
 - Natural gas ~950 Btu/ft³
- Primarily CO and H₂
- Usually highly diluted with N₂
- Syngas conditioning required for use in a gas engine
- Thermal oxidation of syngas avoids gas cleaning

Example Syngas Composition (v/v)

```
Hydrogen = 9%
Carbon monoxide = 14%
Carbon dioxide = 20%
Methane = 7%
Nitrogen = 50%
```

Gasification vs. Incineration

Gasification

- Drying required as pretreatment step
- Designed to maximize feedstock conversion to CO and H₂
- Reducing environment
- Limited oxygen

Incineration

- Drying not required as pretreatment step
- Designed to maximize feedstock conversion to CO₂ and H₂O
- Highly oxidizing environment

Excess air

Biosolids Gasification Configurations

Two Stage Gasification

- Syngas cleaning
- Internal combustion engine
- Produce electricity and recoverable heat

Close-Coupled Gasification

- No syngas cleaning
- Syngas thermally oxidized
- Heat recovery and/or power generation from flue gas

Commercial Status

- Biosolids gasification still in embryonic stages
- Pilot-scale and demonstration facilities:
 - M2R/Pyromex Emmerich, Germany (trials in 2010)
 - Nexterra Kamloops, BC (trials in 2009)
 - Primenergy Tulsa, Oklahoma (trials in 2008)
 - Tokyo Bureau of Sewerage Kiyose, Japan (2005-2006)
 - Stamford Biogas Stamford, CT (2008)

Full-scale installations:

- Kopf Balingen, Germany (2002-present)
- Kopf Mannheim, Germany (in commissioning phase)
- MaxWest Sanford, FL (September 2009-present)
- Tokyo Bureau of Sewerage Kiyose, Japan (July 2010present)

Kopf Full-Scale Installations

Original Balingen Plant

- Capacity:
 - Balingen: 5.4 tpd
 - Mannheim: 13.7 tpd

Photos courtesy of Kopf

Process Diagram for Kopf Gasification Plant

MaxWest Full-Scale Installation

- Capacity: 80 tpd (wet)
- Owned and operated by MaxWest
- Dryer requires some supplemental natural gas

Photos and Schematics of MaxWest System

Sanford Facility Process Flow Diagram

Staffing Requirements

- Sanford facility staffing requirements
 - 6 full-time operators
 - Plant manager and administrator
 - Owned and operated by MaxWest
- Now offering gasification equipment as capital sale
- Typical installed cost in the range of \$7-10M

M2R/Pyromex Demonstration Unit

- 1 tpd demonstration unit
- Solids from raw wastewater screening (after headworks screens)
 - "Fresh solids" from 200-350 µm fabric screen filter
- "Ultra-high temperature gasification"
 - ~1150°C
 - No oxygen

Induction Coil

Syngas from "Fresh Solids"

- Trials with solids from Adelanto, CA WWTP
- January and June of 2010
- Syngas properties
 - CO = 31.5%
 - H₂ = 49.2%
 - CH₄ = 7.73%
 - $CO_2 = 3.20\%$
 - 8.83% "unidentified gases"

Gikas et al., 2011

Stamford, CT Waste to Energy Project

- High electricity costs
 - \$0.18/kwh
 - City identified need for up to 15 MW additional power
- Proposed gasification system to generate electricity
 - 25 tpd (dry) facility
 - Produce 1-3 MW of electricity from syngas
- 2007 Thermal drying facility constructed
- Pilot gasification facility
 - Trailer mounted fixed-bed updraft gasifier (0.53 tpd)
- 2008 to 2009 Full-scale trials with three vendors
 - Primenergy, Nexterra, Kopf

www.stamfordbiogas.com/Kappe%20Gasification%20for%20SF.pdfSimilar

Stamford/Nexterra Current Status

 "The public balked at the project's \$40 million price tag, and the WPCA board voted to kill the venture in early 2010 after losing faith in its technical and economic feasibility."

Read more: <u>http://www.stamfordadvocate.com/news/article/</u> <u>Waste-to-energy-remnant-donated-to-</u> <u>UConn-3431002.php#ixzz2AAK4RDIv</u>

Energy Balance Considerations

- Net Energy = Energy Outputs Energy Inputs
- Main energy outputs
 - Electric power
 - Heat
- Main energy inputs (parasitic loads)
 - Dryer
 - Blowers
 - Gasifier startup
 - Gasifier external energy needs
 - Induction heater, plasma torch, etc.
 - Syngas cleanup

Courtesy of Huber

Power Generation Options

- Fuel cells not currently used with syngas
- Gas turbines require minimum heating value of 450 Btu/ft³ and pressurization of syngas
- Internal combustion engines possible
 - Requires minimum heating value of ~140 Btu/ft³
 - Still may need to blend with natural gas

Energy Required for Drying

- Thermodynamics
 - Typically 1,400-1,700 Btu/lb of water evaporated
- Heat sources:
 - Natural gas, methane, propane, electric power

 Recovered he Solar For a 25 dtpd dr 	eat, waste heat ying facility:	25 dtpd gasification + thermal oxidation system could yield approx. 8-10 MMBtu/hr		
Scenario	Energy Required (MMBtu/hr)	Natural Gas Cost (\$/yr)	Power Cost (\$/yr)	
15% Solids Feed	17.4	\$1,181,000	\$2,006,000	
20% Solids Feed	12.2	\$827,000	\$1,404,000	
25% Solids Feed	9.0	\$614,000	\$1,043,000	

Assumes 1,500 Btu/lb water evaporated, 90% dry solids product, natural gas = 1,030 Btu/cf, natural gas = $\frac{1,030 \text{ Btu/cf}}{1000 \text{ cf}}$, power = $\frac{0.045}{\text{ kWh}}$

Energy Balances Presented in Literature

- 5 tpd two-stage gasification system (~4-6 mgd WWTP)
- Energy balances NOT from actual full-scale operation

 Air-Blown Gasifier ¹ Net output = 165 kW 	M2R/Pyromex Gasifier ² • Net output = 295 kW		
 Assumptions: Syngas HHV = 190 Btu/ft³ System parasitic load = 75 kW Biosolids dried to 90% solids 	 Assumptions: Syngas HHV = 338 Btu/ft³ System parasitic load = 116 kW Biosolids dried to 78% solids 		

- M2R also presented energy balances in recent paper for a hypothetical 20 mgd WWTP (Noll, 2012)
 - Claimed net electrical energy output of nearly 2:1 vs. anaerobic digestion
- 1. Source: US EPA, 2012; 2. Source: M2R Thermal Energy Conversion Brochure

Energy Balances Presented in Literature

- From Stamford Waste to Energy project report:
 - Biosolids feed rate = 3,695 lb/hr
 - Syngas production rate = 2,595 scfm
 - Syngas LHV = 117 Btu/scf
 - Quantity of syngas = 84,287 scf/ton-biosolids
 - Cold gas efficiency = 69.4%
 - Gross electric power production = 1,869 kW
 - Net electric power production = 1,623 kW
- Proposed facility footprint of 140'x100'
- Project killed due to cost and technical feasibility

Energy Balances from Operating Facilities

- Kopf Balingen plant
 - Digested sludge
 - Equivalent to approx. 7.2 mgd
 - Original plant used solar drying
 - Produced ~70 kW of electric power
 - 15 kW needed for parasitic loads
 - ~55 kW net
 - Produced ~140 kW of thermal energy
 - Used to heat digesters at the WWTP
 - Rebuilt in 2006 added belt dryer
 - Most of the gas now used for heating the belt dryer

Energy Balances from Operating Facilities

- MaxWest facility in Sanford, FL
- Main goal is an energy-neutral system
 - Current input to dryer is 16% solids
 - Needs to be dried to 90% solids
 - Current system requires natural gas supplement for dryer
- According to MaxWest, achieving energy-neutral requires:
 - 23-25% solids feed depending on ratio of primary/secondary sludge

Economics of Two-Stage Sludge Gasification

- Economics largely dependent on electricity cost
 - Renewable energy tariff

Case	National Average Wholesale Electricity Rate	New England Average Industrial Electricity Rate + RE Tariff (\$0.0435/kWh)	
Electricity Cost, \$/kWh	\$0.042	\$0.093	
Tipping Fee, \$/DT	\$70	\$70	
Annual Operating Revenue, \$	\$41,624	\$61,742	
Annual Operating Cost, \$	(\$36,995)	(\$41,551)	
Capital Costs, \$	(\$269,815)	(\$269,815)	
CAPEX per kW, \$/kW	\$4,652	\$4,652	
Payback Years	21	7	

Costs presented in USD per dry ton per day operating capacity; source: US EPA, 2012

Air Emissions Regulatory Requirements

- Currently no specific EPA regulations
 - Case by case basis
 - May be classified as incinerators
- Criteria air pollutants
 - Sulfur oxides (SOx)
 - Carbon monoxide (CO)
 - Nitrogen oxides (NOx)
 - Particulate Matter (PM)
- Hazardous air pollutants
 - Hydrogen chloride (HCI)
 - Dioxins and furans (chlorinated organics)

Air Emissions Data

Emission Limits in 40 CFR Part 60 – Final Rule for SSIs

Pollutant	Units	Existing FB SSIs	New FB SSIs	MaxWest Gen #1 ¹	MaxWest Gen #2 ²
Cadmium (Cd)	mg/dscm	0.0016	0.0011	0.0000723	-
Carbon Monoxide (CO)	ppmvd	64	27	7.87	16.1
Hydrogen Chloride (HCl)	ppmvd	0.51	0.24	1.8	0.321
Mercury (Hg)	mg/dscm	0.037	0.0010	0.00798	-
Oxides of Nitrogen (NO_x)	ppmvd	150	30	432.17	15.4
Lead (Pb)	mg/dscm	0.0074	0.00062	0.000819	-
Dioxins/Furans	ng/dscm	0.10	0.0044	0.0285	-
Particulate Matter (PM)	mg/dscm	18	9.6	9.6	8.23
Sulfur Dioxide (SO ₂)	ppmvd	15	5.3	4.17	0.0

1. Source: US EPA, 2012

2. Source: data provided by MaxWest

Gasification Relative to Today's Issues

Energy

- **?** Potential for energy generation (depends on syngas quality)
- Drying required as a pretreatment step
- Heat recovery mostly used for drying

Emissions

- + Reduced relative to incineration
- + Lower air requirements
- + Reducing environment

Regrowth/Reactivation

- + Pathogens destroyed
- + No biosolids to dispose of

Resource Recovery

- + POTENTIAL P recovery from ash
- No N recovery

Process Reliability

- Four full-scale installations worldwide
- One full-scale installation in North America

Be Aware of the Process Cycle History...

Development / No. Installed

Questions?

Thank You!

References

- 1. Judex, J., Gaiffi, M., Burgbacher, H. (2012). Gasification of dried sewage sludge: Status of the demonstration and the pilot plant. Waste Management, 32 (4), 719-723.
- 2. Gikas, P., Noll, S., Stedman, K. "Gasification of Primary Fine-Screened Solids for Energy Production," Eurasia Waste Management Symposium, Halic Congress Center, Istanbul, Turkey, November 14-16, 2011.
- 3. Mountouris, A., Voutsas, E., Tassios, D. (2008). Plasma gasification of sewage sludge: Process development and energy optimization. Energy Conversion and Management , 49 (8), 2264-2271.
- 4. EPA, U.S. (2012). Technology Assessment Report: Aqueous Sludge Gasification Technologies. U.S. Environmental Protection Agency.
- 5. Noll, S. (2012). A Net Energy Comparison of Anaerobic Digestion vs. Ultra-High Temperature Gasification to Achieve Zero Energy, WEF Residuals and Biosolids 2012.
- 6. Li-ping, X., Tao, L., Jian-dong, G., Xue-ning, F., Xia, W., Yuan-guang, J. (2010). Effect of moisture content in sewage sludge on air gasification. J Fuel Chem Technol , 38 (5), 615-620.