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• Charcoal formation (pyrolysis) 
•  Several thousand years old 

• Gasification 
•  Large scale use on coal in the 1800’s; wood in 1900’s 
•  New focus → alternative feedstocks 

Background – History of Gasification  
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EPA, U.S. (2012). Technology Assessment Report: Aqueous Sludge Gasification Technologies. 



Pyrolysis Reactions 
 

Process Fundamentals 
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Carbon 
Feedstock Char 

Tars 
H2      

CH4 

General Steps 
1.  Drying 
2.  Pyrolysis (volatilization) 
3.  Combustion (oxidation) 
4.  Gasification (reduction) 

Main Types of Gasifiers 
•  Fixed bed 
•  Fluidized bed 

Heat 



Reaction Pathways 
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Combustion (Oxidation) Reactions 

Gasification (Reduction) Reactions 



Induction Heater (Pyromex) Plasma Torch (Westinghouse) 

Heating Methods  
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Feedstock Combustion: 

External Heat Sources: 

Char + Limited O2 → CO2 + CO + H2O + Heat 



Updraft Gasifier 
•  Feed: 45-50% DS possible 

Technologies – Fixed Bed Gasifiers 
Downdraft Gasifier 

•  Feed: >80% DS 
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Combustion 
Zone 

Reduction 
Zone 

http://www.uaex.edu/Other_Areas/publications/publications_list.asp 



Bubbling Fluidized Bed 
•  Feed: >85% DS 

Technologies – Fluidized Bed Gasifiers 
Circulating Fluidized Bed 

•  Feed: >85% DS 
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Syngas 

http://www.uaex.edu/Other_Areas/publications/publications_list.asp http://www.cospp.com/articles/print/volume-10/issue-1/features/danish-
biomass-gasification.html 



• Prefer undigested sludge 
• Higher volatile content and less ash preferred 

Feedstock Properties 
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Parameter 

“Typical” 
Undigested 

Sludge 1 

“Typical” 
Digested 
Sludge 1 

 
“Fresh Solids” 2 

Ash, % 25-30 40-50 5.5-8.5 

Volatile, % 65-70 40-50 86.3 

Fixed C, % 5-10 5-10 7.9 

HHV, Btu/lb 6,500-8,500 3,000-5,500 7,500-8,000 
Sources: 1. Stamford Waste to Energy Draft Report; 2. Gikas et al., 2011 
 

Proximate Analysis of Various Biosolids Feedstocks 



•  Low energy content 
•  100-130 Btu/ft3 typical (air-blown) 
•  Biogas ~550 Btu/ft3 

•  Natural gas ~950 Btu/ft3 

• Primarily CO and H2 

• Usually highly diluted with N2 

• Syngas conditioning required 
for use in a gas engine 

•  Thermal oxidation of syngas 
avoids gas cleaning 

Syngas Properties 
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Example Syngas 
Composition (v/v) 

Hydrogen = 9% 
Carbon monoxide = 14% 
Carbon dioxide = 20% 
Methane = 7% 
Nitrogen = 50% 



Gasification 
•  Drying required as 

pretreatment step 
•  Designed to maximize 

feedstock conversion to CO 
and H2 

•  Reducing environment 
•  Limited oxygen 

Gasification vs. Incineration 

Incineration 
•  Drying not required as 

pretreatment step 
•  Designed to maximize 

feedstock conversion to CO2 
and H20 

•  Highly oxidizing environment 
•  Excess air 
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Two Stage Gasification 
•  Syngas cleaning 
•  Internal combustion engine 
•  Produce electricity and 

recoverable heat 

Biosolids Gasification Configurations 

Close-Coupled Gasification 
•  No syngas cleaning 
•  Syngas thermally oxidized 
•  Heat recovery and/or power 

generation from flue gas 
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Dewatering 

Wet Sludge 

Drying Gasification 
Syngas 

Utilization 

Energy for Drying 

Excess Energy 
Main Energy Sink 
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Two Stage Gasification 

Close-Coupled Gasification 



• Biosolids gasification still in embryonic stages 
• Pilot-scale and demonstration facilities: 

•  M2R/Pyromex – Emmerich, Germany (trials in 2010) 
•  Nexterra – Kamloops, BC (trials in 2009) 
•  Primenergy – Tulsa, Oklahoma (trials in 2008) 
•  Tokyo Bureau of Sewerage – Kiyose, Japan (2005-2006) 
•  Stamford Biogas – Stamford, CT (2008) 

•  Full-scale installations: 
•  Kopf – Balingen, Germany (2002-present) 
•  Kopf – Mannheim, Germany (in commissioning phase) 
•  MaxWest – Sanford, FL (September 2009-present) 
•  Tokyo Bureau of Sewerage – Kiyose, Japan (July 2010-

present) 

Commercial Status 
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Kopf Full-Scale Installations 
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• Capacity:  
•  Balingen: 5.4 tpd 
•  Mannheim: 13.7 tpd 

 

Photos courtesy of Kopf 

Original Balingen Plant 

Rebuilt Balingen Plant 

Dried Biosolids Feed 



Process Diagram for Kopf Gasification Plant 
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MaxWest Full-Scale Installation  
• Capacity: 80 tpd (wet) 
• Owned and operated by 

MaxWest 
• Dryer requires some 

supplemental natural gas 

17 Photos Courtesy of MaxWest 

Biosolids Dryer 

Updraft Gasifier (Gen #1 Unit) Thermal Oxidizer 



Photos and Schematics of MaxWest System 
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Courtesy of MaxWest 

Fluidized Bed Gasifier 
(Gen #2 Unit) 

Cyclone 

Thermal Oxidizer 



Sanford Facility Process Flow Diagram 
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Courtesy of MaxWest 



• Sanford facility staffing requirements 
•  6 full-time operators 
•  Plant manager and administrator 
•  Owned and operated by MaxWest 

• Now offering gasification equipment as capital sale 
•  Typical installed cost in the range of $7-10M 

Staffing Requirements 
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• 1 tpd demonstration unit 
• Solids from raw wastewater 

screening (after headworks 
screens) 
•  “Fresh solids” from 200-350 µm 

fabric screen filter 

•  “Ultra-high temperature 
gasification” 
•   ~1150°C 
•  No oxygen 

M2R/Pyromex Demonstration Unit 

21 Gikas et al., 2011 

UHT Gasifier 

Dewatered “Fresh Solids” 

Induction Coil 



•  Trials with solids from 
Adelanto, CA WWTP 

•  January and June of 2010 
• Syngas properties 

•  CO = 31.5% 
•  H2 = 49.2% 
•  CH4 = 7.73%  
•  CO2 = 3.20% 
•  8.83% “unidentified gases” 

Syngas from “Fresh Solids” 
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Gikas et al., 2011 

UHT Gasifier 

Rotary Fabric Fine Screen 



• High electricity costs 
•  $0.18/kwh 
•  City identified need for up to 15 MW additional power 

• Proposed gasification system to generate electricity 
•  25 tpd (dry) facility 
•  Produce 1-3 MW of electricity from syngas 

• 2007 - Thermal drying facility constructed 
• Pilot gasification facility 

•  Trailer mounted fixed-bed updraft gasifier (0.53 tpd) 

• 2008 to 2009 - Full-scale trials with three vendors 
•  Primenergy, Nexterra, Kopf 

Stamford, CT Waste to Energy Project 
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•  Gasification pilot donated to UCONN 
for research in March 2012… 

Stamford Pilot Gasifier 

24 www.stamfordbiogas.com/Kappe%20Gasification%20for%20SF.pdfSimilar 

Trailer Mounted Gasification Pilot 

Fixed-bed Updraft Reactor 



•  “The public balked at the project's $40 million price 
tag, and the WPCA board voted to kill the venture in 
early 2010 after losing faith in its technical and 
economic feasibility.” 

 
 
Read more: 
http://www.stamfordadvocate.com/news/article/
Waste-to-energy-remnant-donated-to-
UConn-3431002.php#ixzz2AAK4RDIv 

Stamford/Nexterra Current Status 
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• Net Energy = Energy Outputs – 
Energy Inputs 

• Main energy outputs 
•  Electric power 
•  Heat 

• Main energy inputs (parasitic loads) 
•  Dryer 
•  Blowers 
•  Gasifier startup 
•  Gasifier external energy needs 

•  Induction heater, plasma torch, etc. 
•  Syngas cleanup 

Energy Balance Considerations 
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Engine Cooling Jacket Heat Recovery 

•  Fuel cells – not currently used with syngas 
• Gas turbines – require minimum heating value of 450 

Btu/ft3 and pressurization of syngas 

•  Internal combustion engines – possible 
•  Requires minimum heating value of ~140 Btu/ft3 

•  Still may need to blend with natural gas 

Power Generation Options 
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Gas Engine 

Blended 
Gas 

Natural Gas 
(if needed) 

Syngas Electric Power 

Engine Exhaust Heat Recovery 



•  Thermodynamics 
•  Typically 1,400-1,700 Btu/lb of water evaporated 

• Heat sources: 
•  Natural gas, methane, propane, electric power 
•  Recovered heat, waste heat 
•  Solar 

Energy Required for Drying 

 
Scenario 

Energy Required 
(MMBtu/hr) 

Natural Gas Cost 
($/yr) 

Power Cost 
($/yr) 

15% Solids Feed 17.4 $1,181,000 $2,006,000 
20% Solids Feed 12.2 $827,000 $1,404,000 
25% Solids Feed 9.0 $614,000 $1,043,000 
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Assumes 1,500 Btu/lb water evaporated, 90% dry solids product, natural gas = 1,030 Btu/cf, 
natural gas =$8/1000-cf, power = $0.045/kWh 

For a 25 dtpd drying facility: 

25 dtpd gasification + thermal 
oxidation system could yield 
approx. 8-10 MMBtu/hr 



• 5 tpd two-stage gasification system (~4-6 mgd WWTP) 
• Energy balances NOT from actual full-scale operation 

• M2R also presented energy balances in recent paper 
for a hypothetical 20 mgd WWTP (Noll, 2012) 
•  Claimed net electrical energy output of nearly 2:1 vs. 

anaerobic digestion 

Air-Blown Gasifier 1 

•  Net output = 165 kW 
•  Assumptions: 

•  Syngas HHV = 190 Btu/ft3 

•  System parasitic load = 75 kW 
•  Biosolids dried to 90% solids 

Energy Balances Presented in Literature 

M2R/Pyromex Gasifier 2 

•  Net output = 295 kW 
•  Assumptions: 

•  Syngas HHV = 338 Btu/ft3 

•  System parasitic load = 116 kW 
•  Biosolids dried to 78% solids 

29 
1.  Source: US EPA, 2012; 2. Source: M2R Thermal Energy Conversion Brochure 



•  From Stamford Waste to Energy project report: 
•  Biosolids feed rate = 3,695 lb/hr 
•  Syngas production rate = 2,595 scfm 
•  Syngas LHV = 117 Btu/scf 
•  Quantity of syngas = 84,287 scf/ton-biosolids 
•  Cold gas efficiency = 69.4% 
•  Gross electric power production = 1,869 kW 
•  Net electric power production = 1,623 kW 

• Proposed facility footprint of 140’x100’ 
• Project killed due to cost and technical feasibility 

Energy Balances Presented in Literature 
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• Kopf – Balingen plant 
•  Digested sludge 
•  Equivalent to approx. 7.2 mgd 
•  Original plant used solar drying 

•  Produced ~70 kW of electric power 
•  15 kW needed for parasitic loads 
•  ~55 kW net 

•  Produced ~140 kW of thermal 
energy 
•  Used to heat digesters at the WWTP 

•  Rebuilt in 2006 – added belt dryer 
•  Most of the gas now used for 

heating the belt dryer 

Energy Balances from Operating 
Facilities 

31 Courtesy of Kopf 



• MaxWest facility in Sanford, FL 
• Main goal is an energy-neutral system 

•  Current input to dryer is 16% solids 
•  Needs to be dried to 90% solids 
•  Current system requires natural gas supplement for dryer 

• According to MaxWest, achieving energy-neutral 
requires: 
•  23-25% solids feed depending on ratio of primary/secondary 

sludge 

Energy Balances from Operating 
Facilities 
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• Economics largely dependent on electricity cost 
•  Renewable energy tariff 

Economics of Two-Stage Sludge Gasification 
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Case 

National Average 
Wholesale Electricity Rate 

New England Average 
Industrial Electricity Rate + 
RE Tariff ($0.0435/kWh) 

Electricity Cost, $/kWh $0.042 $0.093 

Tipping Fee, $/DT $70 $70 

Annual Operating Revenue, $ $41,624 $61,742 

Annual Operating Cost, $ ($36,995) ($41,551) 

Capital Costs, $ ($269,815) ($269,815) 

CAPEX per kW, $/kW $4,652 $4,652 

Payback Years 21 7 

Costs presented in USD per dry ton per day operating capacity; source: US EPA, 2012  



• Currently no specific EPA regulations 
•  Case by case basis 
•  May be classified as incinerators 

• Criteria air pollutants 
•  Sulfur oxides (SOx) 
•  Carbon monoxide (CO) 
•  Nitrogen oxides (NOx) 
•  Particulate Matter (PM) 

• Hazardous air pollutants 
•  Hydrogen chloride (HCl) 
•  Dioxins and furans (chlorinated organics) 

Air Emissions Regulatory Requirements 
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Air Emissions Data 

35 

 
Pollutant 

 
Units 

Existing 
FB SSIs 

New FB 
SSIs 

MaxWest 
Gen #1 1 

MaxWest 
Gen #2 2 

Cadmium (Cd) mg/dscm 0.0016 0.0011 0.0000723 - 
Carbon Monoxide (CO) ppmvd 64 27 7.87 16.1 
Hydrogen Chloride (HCl) ppmvd 0.51 0.24 1.8 0.321 
Mercury (Hg) mg/dscm 0.037 0.0010 0.00798 - 
Oxides of Nitrogen (NOx) ppmvd 150 30 432.17 15.4 
Lead (Pb) mg/dscm 0.0074 0.00062 0.000819 - 
Dioxins/Furans  ng/dscm 0.10 0.0044 0.0285 - 
Particulate Matter (PM) mg/dscm 18 9.6 9.6 8.23 
Sulfur Dioxide (SO2) ppmvd 15 5.3 4.17 0.0 

Emission Limits in 40 CFR Part 60 – Final Rule for SSIs 

1.  Source: US EPA, 2012 
2.  Source: data provided by MaxWest 



Gasification Relative to Today’s Issues 
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Energy 
? Potential for energy generation 

(depends on syngas quality) 
-  Drying required as a 

pretreatment step 
- Heat recovery mostly used for 
drying 

Emissions 
+  Reduced relative to incineration 
+  Lower air requirements 
+  Reducing environment 
 

Regrowth/Reactivation 
+  Pathogens destroyed 
+  No biosolids to dispose of 

Resource Recovery 
+ POTENTIAL P recovery from ash 
-  No N recovery 

Process Reliability 
-  Four full-scale installations  
worldwide 
-  One full-scale installation in North 
America 



Be Aware of the Process Cycle History… 
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Questions? 
 
 
Thank You! 
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Courtesy of Kopf 

Courtesy of Nexterra 
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