

Upgrading/Retrofitting Your WWTP with MBR Technology

Brian Codianne

10/23/12

Making the Old Young Again

After 10 years of Operation

After upgrade

Retrofit Opportunities Drivers for Retrofits

The Traditional Reasons

- Increase flow, same footprint
- Quality discharge effluent

Economic Downturn

- Cost
- Quicker incremental upgrade

Regulations

- Total Maximum Daily Loads (TMDL)
- Quality driven rather than technology based.

Recycle, Reuse

Lower potable usage

Why MBR?

OVIVO Bringing water to life

Look at the whole plant to see the advantages...

Fundamental Concept

Volume

The Existing System

3000 mg/l MLSS

Capacity Q (MGD)

The MBR

12,000 mg/l MLSS

Capacity 2-3 Q (MGD)

Conventional MBR Systems

Operations at 8,000 to 18,000 MLSS

Process aeration with fine bubble diffusers

Peaking capacity to 2.5Q

BNR (TN to < 3 mg/l, P to < 0.03 mg/l)

- Bio P
- SNdN

Single recycle design

Total system efficiency 0.5 - 0.7 kWh/m³

SMUs:

Small systems (< 2 MGD): RM or RW

Large systems (> 5 MGD): SP400

Retrofit Approach

Maximize capacity within existing trains (Minimize new construction)

- Design MLSS between 11,000 and 12,000 mg/l
- Use SNdN to minimize anoxic volume
- Use MBR oxic volume to offset Pre-Aeration volume

Optimize MBR Selection

Balance basin SWD + HRT + SOTE

Utilize basins to further optimize system NPW

- Inline EQ for operations flexibility and energy
- Offline EQ for peaks (minimize MBR system size)
- Install MBTs (membrane thickeners)

SMU Model Sampling

50 to 200 plates

300 to 400 plates

150 to 200 plates

RW 300 to 400 plates

The SP-400 SMU

Conventional Activated Sludge Systems

Typical CAS Characteristics	<u>Retrofit Opportunity</u>
MLSS Between 2,000-4,000 mg/l SRTs Between 5 and 15 days	Capacity & BNR within existing basinsNo new basins
Primary and Secondary Clarifiers	Ability to re-task clarifiersEqualization for reducing MBRsSludge thickeners
Multiple Trains	Ability to stage construction
Diffused Aeration Systems	Minimizing new air system costs
Depths Between 8' and 16'	Select from multiple SMUs to optimize system

Application in Retrofits – Canton, OH

Existing Plant

- Nitrifying Activated Sludge
 - 39 mgd average flow
 - 70 mgd peak day
- Current BNR
 - No TN limit (>20)
 - No Phosphorus limit (>1.9)
 - TSS Limit < 12
 - BOD Limit < 10
 - NH₃ Limit < 3

Goal of Upgrade

- Extend hydraulic capacity to
 - 42 mgd MMF
 - 88 mgd peak day
 - 110 mgd peak instantaneous
- Improve BNR to
 - TN < 8 mg/l
 - Phosphorus < 1 mg/l

Application in Retrofits – Canton, OH

Application in Retrofits – Canton, OH

Request for Proposal

- No single SMU technology specified
- No MLSS cap
- No flux cap
- Process design with supporting model (optimized per technology)

Present Worth Evaluation

- Total Plant
 - Capital Equipment
 - New tankage
 - Operations
 - Screening
 - Chemicals
 - Solids handling

Application in Retrofits – Canton, OH

Proposed MBR

- SP400 SMUs (12' SWD)
- Single recycle for MBR process
- Bio P phosphorus removal
- 12,000 MLSS design concentration
- Pump assisted gravity permeate configuration
- Biological nutrient removal (BNR)

- No new basins
- Ability for phased construction
- Clarifiers available for EQ
- Supplementing existing air system

Ovivo MBR Systems Application in Retrofits – Canton, OH

Present Worth Summary of Alternatives

	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
Present Worth Cost	Chem P	Bio P	Chem P & BNR	Bio P & BNR	IFAS	MBR
Total Project Cost both Phase I and Phase II	\$107,575,000	\$115,685,000	\$103,700,000	\$109,425,000	\$100,635,000	\$72,120,000
Operation and Maintenance Cost	\$34,206,717	\$38,765,693	\$41,852,273	\$45,355,979	\$48,722,387	\$43,332,085
Total Present Worth All Cost	\$141,781,717	\$154,450,693	\$145,552,273	\$154,780,979	\$149,357,387	\$115,452,085

Ovivo MBR Systems Application in Retrofits – Rio Del Oro, NM

Rio Del Oro, NM

100,000 gpd Conventional Activated Sludge System

Existing system basins allowed for phasing of construction while continuing to treat wastewater through current system

Application in Retrofits – Rio Del Oro, NM

- Phase 2 (400,000 gpd), to convert premix channel and chlorine contact basin to an AX basin. Add upper decks to MBRs
- Phase 3 (future) 800,000 gpd,
 will convert existing Pre-Air basin to a second MBR facility

- Class A1 effluent for reuse
- Phase 1 in at \$13/gallon
- Phase 2 planned for \$5/gallon

Ovivo MBR Systems Marathon, Florida

Existing Circular SBR Basins

Sequencing Batch Reactors

<u>Typical CAS Characteristics</u>	Retrofit Opportunity
 MLSS Between 2,000-4,500 mg/l SRTs Greater than 12 Days Higher HRT to Accommodate Decant 	Capacity & BNR within existing basinsNo new basins
Discharge Equalization to Accommodate Decant Rate	 Ability to re-task equalization Additional BNR volume Influent equalization for reducing MBRs Sludge thickener
Multiple Trains	Ability to stage construction
Aeration Systems Sized to Accommodate Batch Sequencing	Minimizing new air system costs
Deep Tanks (15'-21')	Select from multiple SMUsGravity and PAG Designs
Square, Round, and Rectangular Tanks	Longer aspect ratios simplify retrofits

Ovivo MBR Systems Application in Retrofits – Spirit Mtn, OR

OVIVO Bringing water to life

Spirit Mountain Casino, OR

- ABJ SBR
- 195,800 gpd AAF
- 432,300 gpd MMF

New System

- Extended hydraulic capacity to
 - 300,000 gpd AAF
 - 600,000 gpd MMF
- Improve BNR to
 - BOD5 < 5 mg/l
 - TSS < 5 mg/l
 - Nitrate < 5 mg/l
 - Ammonia < 1 mg/l

Ovivo MBR Systems Application in Retrofits – Spirit Mtn, OR

OVIVO Bringing water to life

- ES200 SMUs
- Single recycle
- Pre React zone converted to anoxic
- Gravity permeate configuration
- Only new wall added was to create the MBR basin

Ovivo MBR Systems Marathon, Florida

Oxidation Ditches

<u>Typical CAS Characteristics</u>	Retrofit Opportunity
MLSS Between 2,000-4,500 mg/lSRTs 15-30 Days	Biological capacity and improve BNR without adding process tankage
Clarifiers	 Ability to re-task clarifier Additional BNR volume Influent equalization for reducing MBRs Sludge thickener or sludge holding
Shallow Tanks (10' – 15')	Select from multiple SMUs
Surface Aerators or BrushesRacetrack Configuration	Challenge with regard to retrofitting SMUs

OVIVO Bringing water to life

Application in Retrofits - Oxidation Ditches

ANOXIC BASIN #1 SWD = 9'-0" VOLUME = ~90,000 GALLONS	PRE-AERATION BASIN #1 ZONE #5 SWD = 8'-9" VOLUME = ~80,000 GALLONS	PRE—AERATION BASIN #1 ZONE #4 SWD = 8'-9" VOLUME = ~80,000 GALLONS	
	PRE-AERATION BASIN #1 ZONE #1 SWD = 8'-9" VOLUME = ~80,000 GALLONS	PRE-AERATION BASIN #1 ZONE #2 SWD = 8'-9" VOLUME = ~80,000 GALLONS	PRE-ABRATION BASIN # ZONE #3 SWD = 8'-9" VOLUME = ~80,000 FALLONS

Application in Retrofits - Oxidation Ditches

Existing Ditch

MBR Solution

Retrofit Approach

Maximize capacity within existing trains (Minimize new construction)

- Design MLSS between 11,000 and 12,000 mg/l
- Use SNdN to minimize anoxic volume
- Use MBR oxic volume to offset PA volume

Optimize MBR Selection

Balance basin SWD + HRT + SOTE

Utilize basins to further optimize system NPW

- Inline EQ for operations flexibility and energy
- Offline EQ for peaks (minimize MBR system size)
- Install MBTs (membrane thickeners)

Opportunity for maximizing retrofit capability with system approach

Case Study-Wilbarger Creek MUD No. 2 MBR

- Hydraulic Loading
 - designed for 0.5 MGD
- Biological Loading
 - Designed for 200 mg/L BOD and 40 mg/L TKN
- Two Process Trains
 - Each with one anaerobic, anoxic, pre-air, and membrane zones
 - Air supply system on common header
 - Membrane air scour
 - Pre-air zone course bubble diffusers
 - Multiple air lift pumps

Findings

- Influent flow 0.15-0.20 MGD (0.5 design)
- Influent BOD 300 and TKN 60 mg/L (200 and 30 design)
- Course bubble diffuses in pre-air basin limiting oxygen uptake
- Frequent membrane cleaning
 - Hard water
 - Dewatered sludge
 - CDS system designed to only fill 200 plates at a time
- Diffuser Cleaning Operation Inefficient
 - No ability to adjust air flow, high air flow (pressure) prevents efficient solids flow through diffuser
 - Fouled diffusers lead to dewatered sludge which leads to ineffective cleans
- Control System Malfunctions
 - Allowed permeate flow without air scour
- Hair and fiber agglomeration
- Energy Inefficient
 - 4.0kwHr/m³ (should be targeting 1.4)

Proposed Modifications

- Energy Pro Conversion
 - Allows using one or both process trains as required
 - Only requires addition of four electrical actuators and some programming
- Install fine bubble diffusers
 - Increased oxygen uptake efficiency
 - Less blower load
- Provide separate air flow setpoint for diffuser cleaning cycle
 - Allows for optimization of solids back flow through diffusers
- Increase CDS system to allow cleaning 5 units simultaneously
 - Implement 2/yr acid cleans to address hard water
- Verify and/or modify control system to ensure protective membrane interlocks
- Install dedicated drain pump to allow for proactive tank inspections

Questions?

Brian Codianne
Regional Manager, MBR Systems
brian.codianne@ovivowater.com
512-834-6027

