Solutions to Mitigate Effects of *Microthrix parvicella* at the Meridian WWTP
Outline

• Background
 • Meridian WWTP
 • What is Microthrix?
 • Meridian’s Experiences with Microthrix

• Investigating solutions

• Concluding remarks
Background
Meridian WWTP

- 6 mgd ADF
- Screenings, grit removal, primary clarifiers
- Secondary treatment pump station
- BNR activated sludge secondary treatment
- UV disinfection, filtration for reclaimed water
- Mesophilic anaerobic digestion
What is *Microthrix Parvicella* (MP)?
- Bête noir of filaments

- Gram positive, un-branched filament
- Surveys in many countries show MP dominates bulking sludges and foams
- Favored by:
 - Long SRTs (BNR Plants)
 - Alternating aerated/ non-aerated zones (BNR plants)
 - Foam trapping environments
 - Low T (Winter/Spring)
 - Long Chain Fatty Acids (LCFA) food source (FOG)
Why is Microthrix a Problem?

• Foaming
 • Aesthetics
 • Carryover to effluent
 • Breeding ground for filaments
 • Digester foaming

• Poor Settling
 • Formation of high sludge blankets
 • High effluent TSS
 • Loss of Clarifier capacity

• Requires low SRT to wash out or chemicals to kill
 • Nitrification can be a problem with both solutions
Meridian *Microthrix* Issues

Seasonal MP blooms (winter and spring) lead to:

- *Microthrix* bulking = reduced capacity of clarifiers
- *Microthrix* foam leads to high TSS = increased filter backwashing

![Biological foam on AS basin](image-url)
Meridian *Microthrix* Control Methods

- Reduce SRT and/or add chlorine for bulking control
 - Inhibited nitrification
 - Increased effluent TSS
- High effluent TSS = reduced tertiary filter capacity
- No nitrification = no reclaimed water production
 - 15.5 mg/L TN limit
City Needed Help Controlling MP

- BC retained to review entire process
Investigating Solutions

How can *Microthrix* be controlled?
Control of *Microthrix*

Various control measures exist for controlling *Microthrix parvicella*

- Eliminate FOG/food sources
 - Addresses cause of filament growth
 - Difficult to accomplish

- Lower SRT, wash out filaments
 - Simple, addresses cause
 - Washes out filaments
 - Loss of nitrification, more WAS

- Surface spraying of foam (polymer, hypo)
 - Difficult to do if covered tanks, maintenance
 - Treats symptom, not cause
Control of *Microthrix*

Various control measures exist for *Microthrix parvicella*

- RAS injection of chemical (Cl₂)
 - Loss of nitrification, increased eff TSS
- Digester modifications (water sprays, submerged fixed cover)
 - Treats symptom, not cause
 - Expensive
- PAX addition
 - Specific to Microthrix, treats cause
- Surface wasting of ML (Classifying Selector) and/or foam
 - Eliminates *Microthrix* at source
Investigating Solutions

Can we eliminate the food source?
BC led investigations – eliminate source of food

- Operator visual inspection for grease conducted
 - No significant grease noted at plant

- Wastewater characterization conducted looking for food sources
 - No significant VFAs inside plant
 - Some external VFAs, but not traced to point source

- Eliminate grease/food not an option
Investigating Solutions

Can we change the SRT?
BC led investigations – SRT Control

Nitrification Occurs

Nitrification Does Not Occur

Need >6 day SRT in spring for complete nitrification – SRT CONTROL WON’T WORK
Investigating Solutions

Chemical addition without detrimental effects?
BC led investigations – add Polyaluminum Chloride (PAX)

- *MP* sensitivity to PAX-14 (no other PAX forms found effective)
 - pre-polymerized aluminum hydroxide
 - Used extensively in Europe for control of MP
- PAX diminishes *MP* ability to use lipids
 - Effectively “starves” *MP*
BC led investigations – effects of adding PAX
BC led investigations – effects of adding PAX

SVI (mL/g)

Nov-10 Feb-11 Jun-11 Sep-11 Dec-11 Apr-12 Jul-12 Oct-12 Jan-13
Investigating Solutions

Can we eliminate the *Microthrix* through alternate means?
BC led investigations – eliminate Microthrix
BC led investigations – eliminate foam trapping structures

Secondary Pump Station is significant grease and foam trapping structure

- RAS and Primary Effluent mixed in wet well
 - Provides food for filament growth
- Low level of aeration, bubble formation due to pump intake turbulence
 - Promotes filament growth, foam formation
- Submerged withdraw from wet well keeps foam trapped
 - Seeds MP from foam in SPS to ABs even with foam control in ABs
BC led investigations – eliminate breeding ground of *M. Parvicella*

- MP laced foam trapped in Secondary Pump Station
- Seeds MP into the aeration tank
- Leads to foaming in aeration basin
- Gets into mixed liquor and leads to poor settling sludge in the clarifier
BC led investigations – Foam Wasting

• When foam concentrates at surface, MP retained longer than average biomass
• Foam trapping aggravates problem and must be minimized for effective control
• Surface foam removal removes foaming filaments first rather than last, eliminating nuisance foams
Classifying Selector Arrangement

Implemented at Dublin San Ramon, CA; El Paso, TX; Minn-St. Paul, MN; Atlanta, GA; Appleton, WI
Eliminating MP in Meridian

• Install a classifying selector to remove foam continuously and prevent buildup
• Makes operation feasible at high SRT, allows for year round nitrification
• Eliminate MP Breeding ground
• Continuous wasting eliminates foam plantwide
• Preferred solids wasting means
Eliminating MP in Meridian
Eliminate foam trapping - Repipe RAS

• Re-use existing pipeline
• Pipe directly into AB (remove foam trapping in SPS)
• Separate RAS and PE

Reroute RAS directly to Aeration Basin
NOTE: PIPING FOR AERATION BASINS 3 AND 4 SIMILAR.
Eliminate Foam Trapping - New RAS Pump Station

- No longer use SPS to pump RAS
- Gravity RAS return to wet well
- Lift RAS into each aeration tank
Meridian Classifying selectors

- Baffles at AB exit
- ML Pump stations
- 3,000 gal wet well
- 6 in dia suction pipe-short length
- 400-500 gpm pumps
Classifying selectors have downsides

- Continuous surface wasting = thin WAS
- Thickening prior to digestion is very important
 - Meridian has DAFTs for WAS thickening – ideal for thin WAS because not hydraulically limited
- Results of non-continuous wasting
 - Remove foam when it becomes a problem
 - Can still lead to bulking and may require secondary bulking control method like PAX addition
 - Could lead to Digester foaming
Investigating Solutions

What’s the most cost effective solution?
PAX vs. Classifying Selector - Which is better solution?

- PAX is good emergency fix

- Long term solution:
 - PAX has relatively low capital but high chemical costs
 - Classifying selector has relatively high capital cost and low operating cost

- Present worth analysis performed
Present worth analysis

- PAX vs Classifying Selector
- PAX slightly more expensive

<table>
<thead>
<tr>
<th>Agency: City of Meridian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project/Problem:</td>
</tr>
<tr>
<td>Alternative 1: PAX Feed</td>
</tr>
<tr>
<td>Alternative 2: Classifying Selector in Aeration Basins</td>
</tr>
<tr>
<td>Alternative 3:</td>
</tr>
<tr>
<td>Alternative 4:</td>
</tr>
<tr>
<td>Alternative 5:</td>
</tr>
<tr>
<td>Alternative 6:</td>
</tr>
<tr>
<td>Alternative 7:</td>
</tr>
<tr>
<td>Alternative 8:</td>
</tr>
<tr>
<td>Alternative 9:</td>
</tr>
<tr>
<td>Alternative 10:</td>
</tr>
<tr>
<td>Alternative 11:</td>
</tr>
<tr>
<td>Alternative 12:</td>
</tr>
<tr>
<td>Year of analysis: 2011</td>
</tr>
<tr>
<td>Escalation rate: 4.00%</td>
</tr>
<tr>
<td>Discount rate: 4.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk</th>
<th>Premium</th>
<th>Benefits</th>
<th>Capital Costs</th>
<th>Other Costs</th>
<th>Capital Cost</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$64,500</td>
<td>($1,138,270)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$194,500</td>
<td>($970,553)</td>
</tr>
</tbody>
</table>

Note: “Status quo” refers to Alternative 1
Make entries in yellow cells only
Concluding Remarks
Meridian has been able to successfully control *Microthrix*

- PAX 14 addition proved to be an effective short-term solution for eliminating *Microthrix*
- A classifying selector proves to be the most cost effective long-term solution at controlling *Microthrix*
 - Requires continuous surface wasting – no more RAS wasting
 - DAFTs will prove invaluable at thickening the mixed liquor prior to digestion
Questions
Meridian Microthrix Issues-Add PAX

- Pax
- 150-190 gpd initially
- 25-30 gpd maintenance
- $3.50/gallon
 - Poly aluminum chloride (PAX) addition is effective
 - Expensive
 - “Chemically Dependent”