Turbo Blowers improve energy efficiency at an oxidation ditch wastewater treatment plant

Authors: Chad Newton, *Gray & Osborne, Inc.* Thomas G. Bridges, *Mukilteo Water & Wastewater District*

MUKILTEO WATER & WASTEWATER DISTRICT

Introduction

- Mukilteo Water & Wastewater District's Big Gulch Wastewater Treatment Facility
- Oxidation ditch activated sludge plant with brush rotor aeration
- Capacity expansion study: turbo blowers with diffused aeration gave significant energy efficiency improvement

Big Gulch Wastewater Treatment Facility

- Originally built in 1970; Upgrades in '84, '89
 - Oxidation-ditch secondary treatment

Hydraulic Profile of the Big Gulch WWTF

Don't Always Focus On Your Rear-end

Don't Always Focus On Your Rear-end

Influent Loading Trends at MWWD

- --- Average Annual BOD5 --- Average Annual TSS
- ---- Maximum Monthly BOD5 ---- Maximum Monthly TSS

- BOD5 Limitation - TSS Limitation

Capacity Study and Engineering Report

- Intermittent soluble BOD loading spikes in 2006
- New sampler revealed TSS loadings much higher than previously measured **OLYMPUS TERRACE**
- Long-term trend of increasing loading rates

G&O #07557 March 2008

Grav & Osborne, Inc

Capacity Study and Engineering Report

Report Recommendations:

- Loading source investigations in collection sys.
- Grit removal improvements
- Activated sludge aeration capacity expansion
- Aerobic digester aeration capacity expansion

Activated Sludge Aeration Alternatives

- 1. Additional brush rotor
- 2. Converting one oxidation ditch to diffused aeration with positive displacement blowers
- 3. Converting one oxidation ditch to diffused aeration with turbo blowers

- Introduced to U.S. market in past two years
- Single-stage centrifugal blower
- Integrated highfrequency VFD

K-Turbo blower at Mukilteo WWD 10

Impeller directly mounted on motor shaft

High-speed permanent magnet motor (up to 60,000 rpm)

Image per K-Turbo Inc.

Contact-less airfoil journal bearing

- 10 times larger diameter than oil bearing
- 10 times length than oil bearing
- Light load only
- Bump structure and Flexible top foil gives maximum supporting force
- Dry lubricant coating protect bearing surface during On/Off (20,000 time with Teflon)

Image per K-Turbo Inc.

- Reduced owner maintenance: no maintenance required for seals, lubrication, etc.
- Low power at motor start
- Can run unloaded at 1% of rated power

Oxidation Ditch "A" peak energy consumption

Parameter	Aeration Method		
	Brush	Diffused	Diffused
	Rotors	Aeration with	Aeration with
		PD Blower	Turbo Blower
Actual Oxygen Demand (lb/day)	4,527	4,527	4,527
Standard Oxygen Demand (lb/day)	6,658	7,611	7,611
Diffuser Air Flow Rate (scfm)	N/A	1,300	1,300
Max. Motor Power (hp)	115	60	50
Max. Motor Power (kW)	86	45	37
Power Savings at Max. Load vs. Brush Rotor (%)		48%	57%
Power Savings at Max. Load vs. PD Blower (%)			17%

Oxidation Ditch "A" annual avg. energy consumption

Parameter	Aeration Method		
	Brush	Diffused	Diffused Aeration
	Rotors	Aeration with	with Turbo
		PD Blower	Blower
Actual Oxygen Demand (lb/day)	2,440	2,440	2,440
Diffuser Air Flow Rate (scfm)	N/A	665	665
Average motor power req'd (hp)	58	28	21
Avg. Annual Power Consumption (kWH)	380,000	183,000	137,000
Annual Power Savings (kWh)		197,000	243,000
Annual Power Cost Savings (\$)		\$13,800	\$17,000
Annual Power Savings vs. brush rotor (%)		52%	64%
Annual Power Savings vs. PD blower (%)			25%

Oxidation Ditch "A" annual O&M costs

Item	Quantity		Unit Price	Amount	
A. Brush Rotor Alternative					
Power	380,000	kWH	\$0.07	\$26,600	
Repair and Maintenance	1	LS	\$2,300	\$2,300	
Total				\$28,900	
B. Diffused Air with PD Blower Alternative					
Power	183,000	kWH	\$0.07	\$12,800	
Repair and Maintenance	1	LS	\$2,100	\$2,100	
Total				\$14,900	
C. Diffused Air with Turbo Blower Alternative					
Power	137,000	kWH	\$0.07	\$9,600	
Repair and Maintenance	1	LS	\$1,800	\$1,800	
Total				\$11,400	

Oxidation Ditch "A" lifecycle cost comparison

Alternative	Total	Annual	20-year Net
	Construction	O&M Cost	Present
	Cost	Estimate	Value
Brush Rotor Alternative	\$261,000	\$28,900	\$808,000
Diffused Air with PD Blower			
Alternative	\$279,000	\$14,900	\$507,000
Diffused Air with Turbo Blower			
Alternative	\$321,000	\$11,400	\$490,000

- Selected alternative: Diffused air with turbo blower
- Despite higher capital cost, energy efficiency resulted in a payback period of 4 years
- Lowest 20 year lifecycle costs (3% lower than PD blower)
- 65% energy savings compared to brush rotors
- 25% energy savings compared to PD blower

- Snohomish County PUD No. 1 monitored electricity consumption before and after Ditch "A" project construction
- Rebate for construction costs equal of \$0.17/kWH of annual electricity savings
- District to receive PUD Incentive Rebate of \$39,171

Pre-Metering Results: Ditch "A" Week 2 Rotor 1

Pre-Metering Results: Ditch "A" Week 2 Rotor 2

Post-Metering Results: Ditch "A" Blower

- Dewatering of Existing Tankage
- Removal /Disposal of Accumulated Grit and Debris
- Demolition/Removal of Old Equipment
- Locating Plumbing and Electrical
- Installation of New Equipment
- Testing of New Equipment

• Dewatering of Existing Tankage

 Removal /Disposal of Accumulated Grit and Debris

Demolition/Removal
 of Old Equipment

Locating Plumbing

• Locate Electrical

Where is that empty conduit?

• Installation

•And Protection of New Equipment

• Testing of New Equipment

Operational Considerations Brush Aerators vs. Turbo Blower With Fine Bubble Diffusers

- Ease of Repair
- Hydraulic Limitation
- DO Transfer Efficiency
- Need for Submersible Mixer
- Lubrication Required
- Aerosol Production
- Noise

Operational Considerations Brush Aerators

Pro

Simple "In-House"RepairSubmersible Mixer NotNeeded

Con

Limits Hydraulic Level
Damages Floc Structure
Lubrication Required
Exposes Operators to Aerosols
Energy inefficient
Difficult to Control D.O.

Operational Considerations Turbo Blower With Fine Bubble Diffusers

Pro

•Unlimited Hydraulic Level
•No Damage to Floc
Structure
•No Lubrication Required
•Minimal Maintenance
•Minimal Aerosols
•Energy Efficient

- •Good D.O. Control
- •Low Noise

Con

- •Needs Submersible Mixer
- Blower Repairs Proprietary
- •Diffuser Inspection/Repair Requires Dewatering of Basin

Conversion of Ditch "B"

- District is converting Oxidation Ditch "B" to diffused air with turbo blowers
- Operational advantages; consistency
- 35% reduction in annual energy consumption for the oxidation ditch system

Conversion of Ditch "B"

- Removal of four 30-hp brush rotors (120 hp total)
- Installation of two additional 50-hp turbo blowers (one duty, one standby)
- Installation of two new 6-hp submersible mixers
- Equipment has been pre-purchased
- Construction is underway with startup in October

Conversion of Ditch "B"

Conclusion

Blowers and diffused air may be advantageous for oxidation ditch operation:

- Significant energy savings
- Operational flexibility

Turbo blowers offer further energy savings in comparison with positive displacement blowers (25% in the case of Mukilteo)

