Digester Heating 101

Tom Mossinger – Carollo Engineers
PNCWA 2012
2012 Annual Conference
Boise, ID
October 23, 2012

Agenda

- Review hot water system theory and operation
- Discussion on typical components
- Highlight typical problems

12cwea - Renewable Energy Credits.pptx/2

Heating System - Considerations

- Move heat from sources to uses
- Hydraulics
- Allow for future expansion and/or cogeneration
- Space requirements
- Complexity of system
- Flexibility
- Operations and maintenance

412cwea - Renewable Energy Credits.pptx/3

Heating System Types

- Primary loop
- Primary-secondary loop
- Constant flow
- Variable flow
- Hybrid systems

There are Literally 100's of configurations!

Simplified Hot Water System Schematic

cwea - Renewable Energy Credits.pptx/5

Typical Cogeneration System

wea - Renewable Energy Credits.pptx/6

Typical Boiler System

Typical Digester Heating System

Hot Water System Pressure Control

wea - Renewable Energy Credits.pptx/9

Typical Hot Water System Components

- Pumps
- Air separator
- Expansion tank
- Makeup water connection
- Chemical feeder
- Air relief valves
- Control valves
- Balancing Valves
- Strainers

- Pressure relief valves
- Boilers
- Valves
- Heat exchangers

Digester Heat Exchangers

Shell and Tube Sludge Heater

- Combined boiler and heat exchanger
- Hard to incorporate future hot water systems
- Least efficient
- Less flexible

Tube-in-Tube Heat Exchangers

- Primarily used for thicker sludge or where plugging is likely
- More expensive
- Larger footprint
- Hard to predict heat transfer

Spiral Heat Exchangers

- Most efficient
- Predictable heat transfer
- Less expensive
- Smallest footprint
- Easy to clean
- More likely to plug with thicker sludges or poor screening

Typical Problems

- Corrosion
 - Air intrusion
 - Water treatment
- Flow rate control
 - Balancing
- HW system expansion after expansion after expansion
- Complication!

Heat Exchanger Scale – Vivianite, Baked on Sludge

Ductile Iron is an Excellent Heat Conductor

Scaling Decreases Heat Transfer

Thermal imaging provides a quick nondestructive method to determine the extent of scaling

What is the extent of scaling in the digester piping?

100° F

125° F

Temperature

Prevention and planning can prevent scaling problems

- Tools available for cost-effective detection
- Mitigation involves removing conditions that favor scaling:
 - Remove phosphorus
 - Prevent large temperature changes
 - Prevent large pH changes

Water Treatment

- Companies such as Nalco provide sampling and treatment chemical packages
- Chemicals typically include:
 - Scale inhibitor
 - Oxygen scavenger
 - Biocide
- Use water softener for all make-up

Questions?