Liquid Phase Collection System Odor Control 101

Presented by

Richard Finger
Presentation Outline

- General System Considerations
- Treatment Technologies
 - Air and Pure Oxygen Injection
 - Oxidants
 - Chlorine and Hypochlorite
 - Hydrogen Peroxide
 - Ozone
 - Iron Salts
Presentation Outline (Cont.)

- Treatment Technologies (cont.)
 - Caustic Dosing
 - Continuous
 - Shock Dosing
 - Nitrate Salts
 - Anthraquinone
 - Enzymes and Bacterial Augmentation

- Summary
General System Considerations

- **Think System Wide**
 - There may be people working in the collection system downstream of chemical addition
 - Chemical doses (and their effects) end up at the treatment plant
 - Evaluate cost-effectiveness based on actual performance at your site
 - Conduct thorough monitoring to evaluate performance of chemicals
Air and Pure Oxygen Injection

- Direct Injection to Forcemains
- Injection into High Pressure Side Streams or Inverted Siphons for Gravity Systems
- Introduction of Oxygen can:
 - Inhibit the growth of sulfate reducing bacteria
 - Chemically oxidize sulfide
 - Promote biological oxidation of sulfide
Air and Pure Oxygen Injection (Cont)

- Air Injection
 - Need to Consider Forcemain Profile
 - Need to Consider Forcemain Composition
 - Best for Pressure Systems (forcemains)
 - Need to Know Oxygen Uptake Rate (4-20 mg/l/hr)
 - Effective Treatment Duration is a Function of Uptake Rate.
 - Most Effective at Inhibiting Sulfide Generation
 - Can be Relatively Inexpensive
Air and Pure Oxygen Injection (Cont)

- **Pure Oxygen Injection**
 - Can Dissolve 5X More Oxygen Than with Air
 - Does Not Introduce Nitrogen, Thus Less Potential for Gas Accumulation at High Points
 - Can Usually Lease Storage/Vaporization Equipment.
 - Will Need Booster Blower at Pressures > 40 psi
Oxidants

- **Chlorine and Hypochlorite**
 - Chlorine is Being Phased Out in Favor of Hypochlorite
 - Mixes Rapidly with Wastewater
 - Rapidly Reacts with Inorganics (<1 min)
 - Dosage Rate in Range of 8 lb Chlorine per lb Sulfide
 - Treatment Effective for About 4 Hours
 - Reasonably Simple to Implement
Oxidants (Cont)

- **Hydrogen Peroxide**
 - Oxidizes Sulfide to Sulfate and Sulfur
 - Dosage in the Range of 4-8 pounds H_2O_2 per Pound Sulfide
 - Requires 15-30 Minutes for Complete Reaction
 - Can Also Serve as a Source of Oxygen to Inhibit Sulfate Reduction.
 - Requires Special Equipment, Which Can Be Leased from Vendor
 - Provides About 4 Hours Control
Hydrogen Peroxide Storage
Oxidants (Cont)

- **Ozone**
 - Most Often Used in Pump Stations to Treat Air
 - Strong Oxidant, Which is Not Selective for Sulfide
 - Normally Too Expensive for Liquid Stream Treatment
Iron Salts

- Includes Ferrous/Ferric Chloride and Ferrous Sulfate
 - Sulfide is Removed by Precipitation with the Iron
 - Dosage is not Stoichiometric and Varies as a Function of the Level of Control Required
 - Dosage in the Range of 1.5 – 2 Pounds Iron per Pound Sulfide with Limit of ~0.5 mg/l S
 - Organic Acids Can Interfere with Reaction
 - Can Also Help Control Sulfides in Digesters
 - Can be Cost Effective
 - Are Classified as Hazardous Chemicals
Ferric Chloride
Caustic Dosing

Availability of Hydrogen Sulfide for Release to the Atmosphere is a Function of pH
Effect of pH on Hydrogen Sulfide -Sulfide Equilibrium

![Graph showing the effect of pH on hydrogen sulfide-sulfide equilibrium.](image)

- **H2S**
- **HS−**
- **HS−2**

This Stinks!

These do not.

Percent of Total

pH
Caustic Dosing (cont)

- Available Chemicals include
 - Sodium Hydroxide (25 and 50%)
 - Lime
 - Magnesium Oxide/Hydroxide
- Sodium Hydroxide is Most Commonly Used
- Classified as a Hazardous Chemical, so Significant Storage/Handling Issues
- If Stored On-site, Need Heat Tracing
Caustic Dosing (cont)

- Continuous Dosing
 - Raising pH to Between 8 and 9 Prevents Available Sulfide from Being Released to Atmosphere
 - Can Require a Significant Quantity of Caustic Over Time
 - Dosage Rate is Unrelated to Sulfide Concentration, but Depends on Wastewater Alkalinity
 - Not Commonly Used Because of Cost and Potential Treatment Plant Impacts
Caustic Dosing (cont)

- **Slug Dosing**
 - Goal is to Raise pH to 12.5 or Above for at Least 20 Minutes
 - Inhibits Sulfide Generation by Stripping Slime Layer
 - Effect Lasts from 4 Days to Several Weeks, so Requires Periodic Dosing During the Odor Season
 - Works on Both Forcemains and Gravity Sewers
Caustic Dosing (cont)

- **Slug Dosing (cont)**
 - Dosage is Dependent on the Wastewater Alkalinity
 - Significant Risk to Collection System Personnel and Downstream Facilities
 - Best Used On Sub-systems with Flows Not Exceeding 10% of Total System Flow
 - Dosing Can be Done Using Tank Truck, Thus Avoiding Fixed Facilities
 - Can Be Cost Effective in Some Applications
Caustic Storage Tank
Nitrate Salts

- Most Common Sources are Calcium and Sodium Nitrate.
- May be Considered Proprietary Products
- Serve as an Oxygen Source, so Can Both Inhibit Sulfide Generation and Oxidize Existing Sulfide
- Generally Require a Period of Dosing to Achieve Full Effect
- Dosage Varies Based on Several Factor, so Needs to be Adjusted Based on System Monitoring
Nitrate Salts (cont)

- Dosages in the Range of 1-3 Pounds Nitrate Oxygen per Pound of Sulfide are Common
- Proprietary Combinations are Available That Combine Nitrate Salts with Caustic or Other Chemicals That Inhibit Sulfate Reduction or Sulfide Release
- Products are Not Classified as Hazardous
- Can Often Be a Cost Effective Solution
- Avoid Calcium Nitrate When Waste Stream Contains High FOG Concentrations
Nitrate Feed System
Nitrate Feed System
Anthriquinone

- Inhibits the Ability of Organisms to Reduce Sulfate
- Requires Periodic Dosing as Effect Wears Off
- Has Not Worked in Some Applications
- Available in Combination with Nitrate Products (Proprietary Product)
- Cost Effectiveness Needs to be Evaluated On-site
Enzymes and Bacterial Augmentation

- Focus is on Changing the System Ecology
- Limited Data on Effectiveness
Discussion

- Many Technologies/Approaches Available
- Applications are Often Site Specific Due to Both System Characteristics and Local Chemical Price Variability
- Systems Should Be Tested Prior To Implementation
- Systems Should Be Re-evaluated Periodically
- Spend 1% to 10% of Annual Chemical Cost Tracking Performance
Discussion

Evaluation Criteria For Choosing an Odor Control Method

- Characteristics of the wastewater
- Type of odor being controlled
- Cost Effectiveness
- Safety
- Regulatory compliance

- Operability
- Maintainability
- Environmental issues
- Site space available
- Aesthetics